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Outline and Objective 

Objective of this presentation: !
u  Venus and Outer-Planets (Saturn, Neptune, Uranus) in-situ science explorations 

are challenging.  Part of the challenge is imposed by rigid aeroshell technology.  !
u  Deployable or low ballistic coefficient aeroshell technology is a game changer !

•  Very benign entry environment much more enabling of science!
u  Planned investments by Office of the Chief Technologist, has the potential to 

change the way we do EDL at Venus, Saturn, Neptune, Uranus, and Mars !
!
Outline: !
u  High Ballistic Co-effiecient (rigid) Aero-shell Technology (HBCAT)!
u  Entry at Venus, Saturn and Uranus using Low Ballistic Coefficient Aeroshell 

Technology (LBCAT)!
u   ADEPT and Flexible TPS Concepts Under Development  !
u  Concluding Remarks!
u  Questions?!
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Pioneer-Venus:  

u P-V Probes:  One Large Probe and three 
identical Small Probes 
•  Survival was a bonus.  
•  All but one survived impact, but all probes survived 

entry 
•  Entry Velocity 11.5 km/s 

u Large Probe 
•  Ballistic Coefficient: 188 kg/m2; Size 1.42 m 
•  Entry Flight Path Angle: -32.4 deg at 200 km 
•  Peak heat-flux: 4500 W/cm2 (~50% radiative) 
•  Total heat-load (stag): 12.4 KJ/cm2  
•  Peak stagnation pressure: ~10 atm. 
•  Probe Mass: 316.5 kg 
•  Peak deceleration: ~300g 
•  Mass Fraction of Carbon Phenolic TPS: 8.83%  
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Our Vision to Explore Venus: 
Mission Studies: 

Mission Date Proposal 

1 Venus Flagship Study (JPL Led) 2009 Flagship Study 
2 ViTAL: Venus Intrepid Tessera 

Lander 
2010 Decadal Study 

3 VCM: Venus Climate Mission 2010 Decadal Study 
4 VME: Venus Mobile Explorer 2010 Decadal Study 
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Ø  All the missions proposed use scaled P-V shape  
(45 deg sphere-cone)!

Ø  Rigid aeroshell with ballistic coefficient ~200 kg/m2!
Ø  Carbon Phenolic is the only viable TPS!
Ø  Large Gʼload during entry !
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VME (2010) : A Flagship Class Mission Study  
Sponsored by Decadal Survey Committee 

Entry Velocity 11.3 km/s;   EFPA – 21 deg 
Aeroshell Size : 3.5 dia.   
Entry Mass:  2921      Aeroshell Mass=1139 kg 
Mass fraction of Aeroshell = 40% 
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Selecting EFPA and Ballistic Coefficient: Challenges to 
consider & Constraints that impacts Science Payload Mass 

Acknowledgement:  From ESA PEP Study Presentation  
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Venus Entry and 
Descent Constraints: 
 
•  Max heat-flux 
•  Max total pressure 
•  Total heat load 
•  Max deceleration 
•  Max dynamic pressure vs alt. 
•  Drogue chute opening alt.  
•  Shield separation assurance 
•  Sizing main parachute for 

max descent time (toxic env.) 
•  Free fall time from 45km to 

surface (thermal problems) 
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Selecting Entry Flight Path Angle and Ballistic 
Coefficient 

Acknowledgement: 2010 ESA Planetary Entry Probe (PEP) Assessment Study 
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A Carpet plot of Missions to Venus:  High 
Ballistic Coefficient ( P-V Probe Scaled) 

u  Skip-out is ~ (-7.50) 
u  Rigid Aeroshell Ballistic 

Coefficient  ( 200 – 350) 
u  Entry Flight Path Angle 
Ø Lower EFP = Increased (heat-

load and TPS Mass fraction) 
Ø Lower Ballistic Coefficient = 

lower payload mass 
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Venus In-situ Missions: High Ballistic Coefficient 
Rigid Aeroshell Technology (HBCAT) Challenges  

High Ballistic Coefficient ~ 200 or higher!
Ø For Heat-flux (2000 – 7000) w/cm2 stag. pressure (2 – 10) atm,                

Carbon phenolic is the only choice   "
Ø Challenges for Carbon Phenolic are:  "

u Especially need alternate to heritage, fully dense, chop-molded, 
Carbon Phenolic."

u  Lack of ground test facilities capabilities"
Ø  Certification of Vendors and processes "
Ø TPS qualification, and flight heat shield certification"

Ø High Gʼload during entry ( 200 gʼ – 450 gʼ)"
u Robustness to high Gʼ conditions adds mass and verification is a 

challenge"
Ø 45 deg sphere-cone rigid aeroshell geometry "

u Packaging and C.G. constraints"
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LOW BALLISTIC COEFFICIENT  
AEROSHELL TECHNOLOGY (LBCAT) 

If we can fly low ballistic coefficient aeroshell 
at Venus, what would that buy? 
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HBCAT and LBCAT 
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Entry Flight Path Angle, γ 	



Lowering β	


•  lower heat-flux 
•  lower heat-load 
• Low entry mass    
or increased size 

Lowering γ 	


•  lower g’load 
•  raises heat-load 
•  raises heat-flux 

Best is:  
Lower β and γ 
together sufficiently 
so that entry mass 
is not increased 
significantly  
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Feasible Rigid 
Aeroshell 
(HBCAT) 

Mission Enabling 
Region (LBCAT) ? 

A
tm

os
ph

er
ic

 S
ki

p 
ou

t (
-7

.5
o )
	



Infeasible region for due to unrealistic low areal 
density 

Maximum rigid aeroshell size (~5m) 
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Low Ballistic Coefficient Design Space:  
( P-V Probe Scaled) 
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B=10 => P-V Large 
Probe scaled to  6.2 m 

B=20  => P-V Large 
Probe scaled to 4.0 m 

u  Low (Ballistic 
Coefficient & EFPA) 
•  Low peak heat flux 
•  Low G’load 
•  Low heat load 
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What Happens With Even Lower Ballistic 
Coefficient in the Design Space? 
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Lower β means 
•  Lower heat-flux and heat-

load 
•  At β of 5 ( dia. = ~8.5m) 

heat flux (60 – 110 w/
cm2) 

•  At β of 1 ( dia. = ~20 m) 
heat flux (25 – 35 w/cm2) 

•  If the desire is to stay at 
very low heat-flux        
(~30 W/cm2) and have 
some margin on γ, g-load 
starts to go back up 

•  Lower β ( <2) => very 
larger diameter/surface 
area and higher g-load 
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LBCAT – Venus - Parametric Study: 
Stagnation Point Peak Conditions 

Ø  Ballistic Coefficient (10 – 30);  Entry Mass (300 kg and 3000 kg); EFPA (-8.5, -9 
and -10.0);  Shapes Considered ( 70o, 60o, 45o)  

Observations: 
Ø  Low EFPA = Low G’load 
Ø  Low Ballic Coeff. = Low heat load 
Ø  Stag. Heat-flux or Pressure not very sensitive 
Ø  Shape:  60 or 70 deg is more preferable than 45 deg sphere cones 
Ø  Heat load is sensitive 
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LBCAT for Venus EDL: Deceleration Profile During 
Entry (Entry Mass = 2000 kg; 70 deg. Sphere-Cone) 
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LBCAT for Venus EDL: Stag. Point Total Heat-Flux 
During Entry ( 2000 kg Entry Mass and 700 Sph.-Cone) 
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LBCAT for Venus EDL: Stag. Pressure During Entry 
( 2000 kg Entry Mass and 700 Sph.-Cone) 
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Laminar vs Turbulent Heating at Peak Heat Flux Point 
Along the Trajectory ( 45 deg sphere cone Scaled P-V)  
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Laminar vs Turbulent Heating at Peak Heating Point Along 
the Trajectory ( 70 deg sphere cone Scaled Viking)  
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What about other Planets? 

u Current Missions Studies for Saturn, Neptune and Uranus 
Probes use rigid aeroshell with high ballistic coefficient 
•  Face similar challenges as Venus 
•  High G’load, and high heat-flux and pressure needing Carbon Phenolic 
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LBCAT for Saturn: 
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•  LBCAT is as effective at Saturn as well (much reduced entry env.) 
•  Entry conditions are similar to Venus with LBCAT 

High Ballistic Coefficient Range Low Ballistic Coefficient Range 
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LBCAT for Uranus: 
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High Ballistic Coefficient Range Low Ballistic Coefficient Range 

•  LBCAT is as effective at Uranus as well (much reduced entry env.) 
•  Entry conditions are similar to Venus and Saturn 



Entry Systems & Technology Division    

Summary: LBCAT for Venus, Saturn and 
Uranus ( & most likely Neptune) 

u Low Ballistic Coefficient Technology  
•  Results in very benign Entry Conditions 
-  Low heat-flux  
-  Low pressure 
-  Low heat load 
-  Low G’load 

•  Challenges of testing and certification for flight is well within current 
facility capabilities 

•  Should result in lower Risk and Cost 

u Science Enabler 
•  Allows for inclusion of sensitive instrumentation 
•  Integration and certification is much easier 
•  More attractive for integrating ASRG technology 
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How can we achieve LBCAT? 

Venus/Saturn/Neptune  
In-situ Missions 

Low Ballistic 
Coefficient, 
Deployables 

Mechanical 
Deployable  Inflatable  Rigid  

(Lower Density) 

High Ballistic 
Coefficient, Rigid 

Rigid 

6/7/2011 POC: 
ethiraj.venkatapathy-1@nasa.gov  

25 



Entry Systems & Technology Division    

Deployable Entry System Concepts 

u  Adaptable, Deployable Entry and Placement Technology (ADEPT) 
•  Concept study proposed under IPP and completed in Nov 2010 

 
u  Our motivation for exploring Venus, Saturn and Uranus is that it will be a 

stepping stone for Technologies such as ADEPT and Flexible TPS 
u  OCT is investing in both ADEPT as well as HIAD and the investment will 

mature these technologies to TRL 5-6 in 3 years.  
u  On going HIAD design at present is looking at inflatable systems with 

relatively low heat-flux capabilities (< 50 w/cm2) 
u   ADPET is looking at high heat-flux   (~250 W/cm2) capable entry systems   

Stowed 

Deployed 

Prior to Landing 
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Flexible, High Heat-flux, Ablative TPS 
Development: 

u OCT Game Changing Technologies Division is 
investing in Flexible, Ablative TPS starting (2012 – 
2014) leveraging the investment made by ARMD and 
ESMD mission directorates in the past few years 
•  3 year project to result in TRL 5-6 
•  High heat flux ( > 250 W/cm2) 
•  System integration with inflatable or mechanically 

deployable (ADEPT) 

6/7/2011 POC: 
ethiraj.venkatapathy-1@nasa.gov  

27 



Entry Systems & Technology Division    

Concluding Remarks 

u Use of rigid aeroshell (high ballistic coefficient) challenges, 
though limiting, helped achieve great science in the past 
•  Pioneer-Venus and Galileo 

u Current manufacturing ( Carbon-Phenolic) and test facility (arc 
jet) limitations as well as more demanding mission 
requirements (value proposition) needs  
•  Alternate architectures and technologies has the potential to make 

Venus and OP missions less risky and more cost effective 
•  This does not mean we are giving up or advocating against 

Carbon Phenolic 
u OCT is investing in low ballistic coefficient deployable 

technologies, such as semi-rigid and inflatable, as well as 
flexible high heat-flux TPS 

u  Successfully maturing these technologies will have “game-
changing” impact and enable better science missions 
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